✨Danh sách tích phân với hàm lượng giác ngược Danh sách tích phân với hàm lượng giác ngược Dưới đây là danh sách các tích phân với hàm lượng giác ngược. : \int\arcsin\frac{x}{c}\,dx = x\arcsin\frac{x}{c} + \sqrt{c^2-x^2} : \int x \arcsin\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arcsin\frac{x}{c} + \frac{x}{4}\sqrt{c^2-x^2} : \int x^2 \arcsin\frac{x}{c}\,dx = \frac{x^3}{3}\arcsin\frac{x}{c} + \frac{x^2+2c^2}{9}\sqrt{c^2-x^2} : \int x^n \sin^{-1}x\,dx = \frac{1}{n+1}\left(x^{n+1}\sin^{-1}x \right. :::\left. + \frac{x^n\sqrt{1 - x^2} - nx^{n-1}\sin^{-1}x}{n-1} + n\int x^{n-2}\sin^{-1}x\,dx\right) : \int\arccos\frac{x}{c}\,dx = x\arccos\frac{x}{c} - \sqrt{c^2-x^2} : \int x \arccos\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arccos\frac{x}{c} - \frac{x}{4}\sqrt{c^2-x^2} : \int x^2 \arccos\frac{x}{c}\,dx = \frac{x^3}{3}\arccos\frac{x}{c} - \frac{x^2+2c^2}{9}\sqrt{c^2-x^2} : \int\arctan\frac{x}{c}\,dx = x\arctan\frac{x}{c} - \frac{c}{2}\ln(c^2+x^2) : \int x \arctan\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\arctan\frac{x}{c} - \frac{cx}{2} : \int x^2 \arctan\frac{x}{c}\,dx = \frac{x^3}{3}\arctan\frac{x}{c} - \frac{cx^2}{6} + \frac{c^3}{6}\ln{c^2+x^2} : \int x^n \arctan\frac{x}{c}\,dx = \frac{x^{n+1{n+1}\arctan\frac{x}{c} - \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(}n\neq 1\mbox{)} : \int \arcsec{\frac{x}{c\,dx = x \arcsec{\frac{x}{c + \frac{x}{c|x|}\ln : \int x\arcsec{x}\,dx\,=\,\frac{1}{2}\left(x^2\arcsec{x} - \sqrt{x^2 - 1}\right) : \int x^n\arcsec{x}\,dx\,=\,\frac{1}{n+1}\left(x^{n+1}\arcsec{x} - \frac{1}{n}\left(x^{n-1}\sqrt{x^2 - 1}\; \right. \right. ::: \left. \left. + (1-n)\left(x^{n-1}\arcsec{x} + (1-n)\int x^{n-2}\arcsec{x}\,dx \right)\right)\right) : \int\mathrm{arccot}\,\frac{x}{c}\,dx = x\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{2}\ln(c^2+x^2) : \int x\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx}{2} : \int x^2\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^3}{3}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx^2}{6} - \frac{c^3}{6}\ln(c^2+x^2) : \int x^n\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^{n+1{n+1}\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(}n\neq 1\mbox{)} 👁️ 89 | ⌚2025-09-16 22:26:19.201 GoStream WEB HOMECREDIT CASH LOAN Unilever Health & Beauty Shopee Nobinobi Website Tima CPQL New VIB - THẺ TÍN DỤNG